

A model for the highly variable orphan flare of Markarian 501

Stephan Richter and Felix Spanier Universität Würzburg

Institut für Theoretische Physik und Astrophysik 7th March 2013

S. Richter and F. Spanier (Uni Würzburg)

Mkn501 orphan flare

1 Observation Campaign on Markarian 501 in 2009

average SED

Outline

the two flares

SSC fits

- steady state
- short time flare
- 3 model for (too) short time scales

Observation

Mrk 501 observed in multi-frequency campaign between March and August 2009 [Abdo et al. (2011)]:

so far nothing special about that ...

S. Richter and F. Spanier (Uni Würzburg)

Julius-Maximilians-

during that time two distinct flares occured [de Almeida et al. (2011)]:

- first flare (MJD 54952) strong variability in the γ -range, but almost none in the x-rays \Rightarrow orphan flare
- **2** second flare (MJD 54977) with significant variability from *XRT* and some in the γ -range

lius-Maximilians

the first flare was also very fast [Pichel and Paneque (2011)]:

Observation

Julius-Maximilians-

• 6 times the flux in less than 2000 seconds

Time scales

- light crossing time in observer frame $t_{lc} = \frac{R}{c \cdot \delta}$
- for typical values $R \sim 10^{15}\,{
 m cm},\,\delta \sim 10 \Rightarrow t_{lc} \sim 3000\,{
 m s}$

 \Rightarrow even when ignoring acceleration time scales, we are at the edge of typical variation time scales

furthermore acceleration happens mainly close to the shock, in a small environment

ius-Maximilians

URZBURG

• 6 times the flux in less than 2000 seconds

Time scales

- light crossing time in observer frame $t_{lc} = \frac{R}{c \cdot \delta}$
- for typical values $R \sim 10^{15}\,{
 m cm},\,\delta \sim 10 \Rightarrow t_{lc} \sim 3000\,{
 m s}$

 \Rightarrow even when ignoring acceleration time scales, we are at the edge of typical variation time scales

furthermore acceleration happens mainly close to the shock, in a small environment

 \Rightarrow need of:

R7RIIRG

- a custom parameter set from the steady state fit
- **b** accurate, time dependent simulation of flare scenarios

The steady state fit ...

..yields

Julius-Maximilians-

WÜRZBURG

fit1: R = 6.5 · 10¹⁵ cm and δ = 37, hence t_{lc} = 5856 s
fit2: R = 2.1 · 10¹⁶ cm and δ = 47, hence t_{lc} = 14 900 s so we already are in trouble!

so what about reacceleration within the emission region?

better, but

..not good enough:

in general: the contrast between the performance of SSC in fitting steady state and variability, respectively is quite puzzling

- basic idea: use another boost to shorten the time scale
- use an external photon field to explain orphan character

basic idea: use another boost to shorten the time scale

Our "fast orphan flare" model

• use an external photon field to explain orphan character

- assume a second photon field with moderate energy
 - no direct detection, since lower Doppler factor
 - apart from that similar to the "main" blob
- when these photons hit the blob they are upscattered by inverse compton and boosted into the "main" blob frame

IR7RI IRG

although lc-time in main blob remains, we get:

injection of a *Melrose*-spectrum [Brown et al. (1983)] photon distribution ($\nu_{cut} = 10^{14}$ Hz, $n(\nu_{cut}) = 3 \cdot 10^{-5}$ cm⁻³)

even better:

even better:

but injecting a distribution with ($\nu_{cut} = 10^{17}$ Hz, $n(\nu_{cut}) = 6 \cdot 10^{-8}$ cm⁻³) raises more difficulties

shape can be modeled qualitatively with an additional photon component, using only two parameters, without occuring time scale constraints

Julius-Maximilians-

WÜRZBURG

Model fit

keen assumption: both flares are connected

- using component 1 as injection for second flare \Rightarrow 21 d is the time it takes them to catch up each other
- hence

$$d = 21 \operatorname{d} \cdot \delta_1 \gamma_1 c \frac{\beta_2 - \beta_1}{1 - \beta_1 \beta_2 - \beta_2 + \beta_1}$$
(1)

• injected photon density and the one in the first blob then translates as

$$n_{ph,inj}(\nu_c) = n_{ph}^{(1)}(\widetilde{\nu_c}) \cdot \left(\frac{\delta_2}{\delta_1}\right)^2 \left(\frac{R_1}{d}\right)^2$$
(2)

non direct detection can be expressed as

$$\frac{(\delta_1^4 R_1^2) n_{ph}^{(1)}}{(\delta_2^4 R_2^2) n_{ph}^{(2)}} < 10\%$$
(3)

(SRT kinematics in the backup slides ;))

this yields for

the parameters

$$\delta_1 = 1.3$$
 $d = 4.4 \cdot 10^{19} \,\mathrm{cm}$ $n_{ph}^{(1)} = 1.5 \cdot 10^{-2} \,\mathrm{cm}^{-3}$

the electron distribution in component 1

Derived limits

$$\gamma = 2800 \quad n_{el}^{(1)} = 4.9 \, {
m cm}^{-3} \quad N_{el,inj} = 2 \cdot 10^{43} \approx 4 imes N_{el}$$
 of steady state

the timescales

$$t_{inj}^{max} = t_{cool}(\gamma) \frac{\delta_1}{\delta_2^2} = 24\,600\,\mathrm{s}$$
 $t_{var}^{max} = \frac{R_1}{c} \frac{\delta_1}{\delta_2^2} = 1500\,\mathrm{s}$

Model fit

- orphan flares with very short time scales can be modeled with an additional, simple photon component
- falsification possible with detailed, simultaneous observation of the synchrotron peak
- a possible origin of these photons is an older, less energetic blob, with a small doppler factor (or almost stationary)
- other photon sources (e.g. accretion disk) might work as well

Thank you

- A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet,
 G. Barbiellini, M. G. Baring, D. Bastieri, K. Bechtol, and E. al. et al.
 Insights into the High-energy {γ}-ray Emission of Markarian 501 from
 Extensive Multifrequency Observations in the Fermi Era. *The Astrophysical Journal*, 727(2):129, Feb. 2011. ISSN 0004-637X. doi:
 10.1088/0004-637X/727/2/129. URL
 http://stacks.iop.org/0004-637X/727/i=2/a=129?key=crossref.
 3481d95923711c6992ac11403c374cdf.
- J. C. Brown, I. J. D. Craig, and D. B. Melrose. Inversion of synchrotron spectra. Astrophysics and Space Science, 92(1):105-112, 1983. ISSN 0004-640X. doi: 10.1007/BF00653590. URL http://adsabs.harvard.edu/abs/1983Ap%26SS..92..105B.
- U. B. de Almeida, D. Paneque, N. Nowak, N. Strah, D. Tescaro, for the Fermi-LAT, MAGIC, and V. Collaborations. Multifrequency Variability and Correlations from Extensive Observing Campaigns of Mkn 421 and Mkn 501 in 2009. Sept. 2011. URL http://128.84.158.119/abs/1109.5887.

Bibliography II

 A. Pichel and D. Paneque. Detailed Multifrequency Study of a Rapid VHE Flare of Mrk501 in May 2009. Arxiv preprint arXiv:1110.2549, (May 2009): 2009–2012, 2011. URL http://arxiv.org/abs/1110.2549.

in the 1-frame, the difference between the liht travel time and the time component 2 is travelling is:

$$\frac{\widetilde{d}}{c\widetilde{\beta}_2} - \frac{\widetilde{d}}{c} = \widetilde{\Delta t} = \delta_1 \cdot \Delta t \tag{4}$$

using relativistic velocity addition

$$\widetilde{\beta}_2 = \frac{\beta_2 - \beta_1}{1 - \beta_1 \beta_2} \tag{5}$$

yields

$$d = 21 \operatorname{d} \cdot \delta_1 \gamma_1 c \frac{\beta_2 - \beta_1}{1 - \beta_1 \beta_2 - \beta_2 + \beta_1}$$
(6)

Model

- devide simulation box into N zones
- modelling the jet propagating through the zones
- describing acceleration via scattering around the shock (Fermi I process)
- calculating the SEDs in each zone and sum up taking into account light travel times

- shock is represented by jump in bulk velocity *u* between neighboured zones
- in shock frame: $u_u = -V_S$, $u_d = V_P V_S$, $R = \frac{u_u}{u_d}$

Model - Fermi-I

• scattering is controlled via the probability for an electron to change its propagation direction

ius-Maximilians

IR7RIIRG