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Blazars
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Blazars - An AGN subclass

many observed AGNs show collimated jet structures

those transport high energy particles away from the host galaxy

due to the size of the observed jets, effective acceleration
mechanisms have to exist within the jet

depending on viewing angle → different properties

Blazars have very small angles → emissions dominated by jet
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Blazars - Typical SEDs

double peak structure

S. Richter and F. Spanier (Uni Würzburg) Spatially Resolved SSC May 5, 2020 5 / 20



SSC-model
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SSC - Model

leptonic model explaining first peak by synchrotron emissions of
electrons

high energy photons are produced by inverse Compton scattering

scattering by the very same electron population that emitted the
photons
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SSC - Inconsistencies

single zone SSC

the electron distribution producing the SED isn’t explained
physically → merely mapping of breaks and spectral indices onto
SED

light travel times have to be checked by hand

light travel time w homogenisation time?

two zone SSC (e.g. Weidinger et al. 2010)

time variation can only be introduced by injection of particles or
arbitrary variations of parameters

hard to explain softlags

ultra short variation timescales still need small emission regions
and/or high doppler factors
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Spatially resolved model
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Spatially resolved model

Figure: Jet of M87 - X-ray: NASA/CXC/MIT/H.Marshall et al., Radio:
F.Zhou, F.Owen (NRAO), Optical: NASA/STScl/UMBC/E.Perlman et al.
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Spatially resolved model

expanding the two zone to a N-zone model

modelling the jet propagating through the zones

describing acceleration via scattering around the shock (Fermi I
process)

calculating the SEDs in each zone and sum up taking into account
light travel times

to
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Spatially resolved model - Fermi-I

shock is represented by jump in bulk velocity u between
neighboured zones

in shock frame: uu = −VS , ud = VP − VS , R = uu
ud

scattering is controlled via the probability for an electron to change
its propagation direction
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Spatially resolved model - Properties

electron distribution
advection through the zones

potentially change of direction due
to scattering

mimics Fermi I

additional acceleration by Fermi II
process

losses due to synchrotron radiation
and invers compton scatering

solving the Vlasov equation

photon distribution

production of photons via synchrotron radiation
energy gain via inverse Compton scattering
losses because of synchrotron self absorption
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Spatially resolved model - Results
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Figure: Jet morphology.
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Spatially resolved model - Results
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Figure: Low state fit of Mrk501. Multifrequency data from Abdo et al. (2011).
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Spatially resolved model - Results
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Figure: Comparison of variability due to particle and shock injection,
respectively.
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Outlook
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Outlook

further model development

electron positron pair interactions

inclusion of hadronic components and using the model of Hümmer,
Rüger, Spanier, and Winter (2010) to calculate secondary fluxes

angle resolved external Compton of photons from the host galaxy,
employing the model by Hutter and Spanier (2010)

further applications

fitting high states and (short time) variability

explaining observed time lags between flare lightcurves of different
bands → due to morphology of emission region ?

compare predicted morphology with VLBI observations?
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Conclusion

self consistent and causal model

explain radio part of the SED much better

produce variation via particle injection as well as additional shocks

resemble light curves and observed time lags?

compare predicted morphology to VLBI observations
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Variability due to shock injection
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Variability due to particle injection
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