

HAP Code Retreat: Simulating Blazars with a two-zone-hybrid and a spatially resolved SSC model

Stephan Richter Universität Würzburg

Institut für Theoretische Physik und Astrophysik Mav 5, 2020

S. Richter (Uni Würzburg)

Spatial SSC

Two-zone-hybrid model (COJONES)

Outline

- Spatially resolved SSC model (UNICORN)
 - Motivation
 - Geometry
 - Acceleration
 - Radiation
 - Numerics
 - Results
 - Outlook

Model highly relativistic regions (so called blobs), moving along a jet, accelerating electrons (and possibly protons) to Lorentz factors of $\sim 10^7$, whose radiated spectrum looks approximately like this (example of *Markarian501*):

Kinetic equation: acceleration zone $\partial_t n_e = \partial_\gamma \left[(\beta_s \gamma^2 - t_{acc}^{-1} \gamma) \cdot n_e \right] + \partial_\gamma \left[[(a+2)t_{acc}]^{-1} \gamma^2 \partial_\gamma n_e \right] + Q_0 - t_{esc}^{-1} n_e$

Kinetic equation: acceleration zone $\partial_t n_e = \partial_\gamma \left[(\beta_s \gamma^2 - t_{acc}^{-1} \gamma) \cdot n_e \right] + \partial_\gamma \left[[(a+2)t_{acc}]^{-1} \gamma^2 \partial_\gamma n_e \right] + Q_0 - t_{esc}^{-1} n_e$

Kinetic equation: acceleration zone

$$\partial_t n_e = \partial_\gamma \left[\left(\beta_s \gamma^2 - t_{\rm acc}^{-1} \gamma \right) \cdot n_e \right] + \partial_\gamma \left[\left[(a+2) t_{\rm acc} \right]^{-1} \gamma^2 \partial_\gamma n_e \right] + Q_0 - t_{\rm esc}^{-1} n_e$$

Kinetic equation: acceleration zone

$$\partial_t n_e = \partial_\gamma \left[\left(\beta_s \gamma^2 - t_{\mathsf{acc}}^{-1} \gamma \right) \cdot n_e \right] + \partial_\gamma \left[\left[(a+2) t_{\mathsf{acc}} \right]^{-1} \gamma^2 \partial_\gamma n_e \right] + Q_0 - t_{\mathsf{esc}}^{-1} n_e$$

COJONES - SSC part

Kinetic equation: radiation zone

$$\partial_t N_e = \partial_\gamma \left[(\beta_s \gamma^2 + \dot{\gamma}_{\rm IC}) \cdot N_e \right] + b^3 t_{\rm esc}^{-1} n_e - t_{\rm esc,N}^{-1} N_e$$

Kinetic equation: radiation zone

$$\partial_t N_e = \partial_\gamma \left[\left(\beta_s \gamma^2 + \dot{\gamma}_{\rm IC} \right) \cdot N_e \right] + b^3 t_{\rm esc}^{-1} n_e - t_{\rm esc,N}^{-1} N_e$$

Observer

Photon distribution

$$\partial_t N_{\rm ph} = R_{\rm syn} + R_{\rm IC} - c \alpha_{\rm SSA} N_{\rm ph} - t_{\rm esc,ph}^{-1} N_{\rm ph}$$

Selfconsistent SSC limit see Weidinger and Spanier 2010 for details

Photo-Meson production:

- $p + \gamma \rightarrow p + n_0 \pi^0 + n_+ \pi^+ + n_- \pi^-$
- $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}$
- $\pi^0 \rightarrow \gamma + \gamma$

IRTRIIRG

• $\mu^\pm \to {\rm e}^\pm + \nu_{\rm e}/\bar{\nu}_{\rm e} + \bar{\nu}_\mu/\nu_\mu$

Resulting $\gamma\text{-radiation}$ above $\approx 10^{28}$ Hz will be opaque to

 \Rightarrow pair induced cascades and cascade radiation will emerge in jets with non-thermal p⁺ present¹.

 $\gamma + \gamma \rightarrow e^+ + e^-$

Now there are 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\begin{aligned} \partial_t N_{p^+} &= \partial_\gamma \left[\beta_p \gamma^2 \cdot N_{p^+} \right] + b^3 t_{\text{esc},p}^{-1} n_{p^+} - t_{\text{esc},p,N}^{-1} N_{p^+} \\ \partial_t N_{e^-} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc},e}^{-1} n_{e^-} + Q_{\text{pp}} + Q_{\text{p}\gamma^-} - t_{\text{esc},e,N}^{-1} N_{e^-} \\ \partial_t N_{e^+} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{\text{pp}} + Q_{\text{p}\gamma^+} - t_{\text{esc},e,N}^{-1} N_{e^+} \end{aligned}$$

Photon distribution

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

$$\partial_t N_{\rm ph} = R_{
m syn} + R_{
m IC} + R_{\pi^0} - c \left(lpha_{
m SSA} + lpha_{
m pp}
ight) N_{
m ph} - t_{
m esc,ph}^{-1} N_{
m ph}$$

Now there are 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\begin{aligned} \partial_t N_{p^+} &= \partial_\gamma \left[\beta_p \gamma^2 \cdot N_{p^+} \right] + b^3 t_{\text{esc,p}}^{-1} n_{p^+} - t_{\text{esc,p,N}}^{-1} N_{p^+} \\ \partial_t N_{e^-} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc,e}}^{-1} n_{e^-} + Q_{\text{pp}} + Q_{\text{p}\gamma^-} - t_{\text{esc,e,N}}^{-1} N_{e^-} \\ \partial_t N_{e^+} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{\text{pp}} + Q_{\text{p}\gamma^+} - t_{\text{esc,e,N}}^{-1} N_{e^+} \end{aligned}$$

Photon distribution

lulius-Maximilians-

WÜRZBURG

$$\partial_t N_{\rm ph} = R_{\rm syn} + R_{\rm IC} + R_{\pi^0} - c \left(\alpha_{\rm SSA} + \alpha_{\rm pp} \right) N_{\rm ph} - t_{\rm esc,ph}^{-1} N_{\rm ph}$$

• Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate $Q_{p\gamma^-}$, $Q_{p\gamma^+}$, $R_{\pi^0} \Rightarrow$ unstable intermediates $(\pi^{\pm}, \pi^0, \mu^{\pm})$ are not taken into account

Now there are 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\begin{aligned} \partial_t N_{p^+} &= \partial_\gamma \left[\beta_p \gamma^2 \cdot N_{p^+} \right] + b^3 t_{\text{esc},p}^{-1} n_{p^+} - t_{\text{esc},p,N}^{-1} N_{p^+} \\ \partial_t N_{e^-} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc},e}^{-1} n_{e^-} + Q_{\text{pp}} + Q_{\text{p}\gamma^-} - t_{\text{esc},e,N}^{-1} N_{e^-} \\ \partial_t N_{e^+} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{\text{pp}} + Q_{\text{p}\gamma^+} - t_{\text{esc},e,N}^{-1} N_{e^+} \end{aligned}$$

Photon distribution

lius-Maximilians-

WÜRZBURG

$$\partial_t N_{\rm ph} = R_{
m syn} + R_{
m IC} + R_{\pi^0} - c \left(lpha_{
m SSA} + lpha_{
m pp}
ight) N_{
m ph} - t_{
m esc,ph}^{-1} N_{
m ph}$$

- Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate $Q_{p\gamma^-}$, $Q_{p\gamma^+}$, $R_{\pi^0} \Rightarrow$ unstable intermediates $(\pi^{\pm}, \pi^0, \mu^{\pm})$ are not taken into account
- $\bullet\,$ Cascades will emerge in the optically thick regime $> 10^{28}$ Hz

A spatially resolved model - UNICORN

• acceleration due to Fermi I happens at finite size shock \Rightarrow

 $R_{acc} \ll R_{rad}$

Motivation

lulius-Maximilians

WÜRZBURG

- acceleration efficiency should depend on distance to shock
- for energies with $t_{cool} < lct$ the blob simply isn't homogenous \Rightarrow effect on global spectral energy density (SED)

• acceleration due to Fermi I happens at finite size shock

 \Rightarrow $R_{acc} \ll R_{rad}$

WURZBURG

- acceleration efficiency should depend on distance to shock
- for energies with $t_{cool} < lct$ the blob simply isn't homogenous \Rightarrow effect on global spectral energy density (SED)
- compute *multiple shock*-scenarios

Motivation

• homogenous models constrain time variability to $\Delta t > R_{rad}/c \Rightarrow$ inhomogenous models allow shorter timescales while preserving causality

• acceleration due to Fermi I happens at finite size shock

 \Rightarrow $R_{acc} \ll R_{rad}$

IIR7RIIRG

- acceleration efficiency should depend on distance to shock
- for energies with $t_{cool} < lct$ the blob simply isn't homogenous \Rightarrow effect on global spectral energy density (SED)
- compute *multiple shock*-scenarios

Motivation

- homogenous models constrain time variability to $\Delta t > R_{rad}/c \Rightarrow$ inhomogenous models allow shorter timescales while preserving causality
- time lags might be explained by light travel time between different components of the blob
- cooling and reacceleration of intermediates of e.g. photohadronic processes can be treated in detail

 \bullet devide simulation region into N slices in the direction parallel to shock normal

Model geometry

• each slice has local bulk speed, electron density, photon density (, magnetic field, radius)

lius-Maximilians

WÜRZBURG

Acceleration - Fermi I

- multiple scattering on both sides of a shock
- scattering is elastic in plasma frame
- when particles cross the shock, the boost into the bulk frame distorts the isotropy of the target distribution
- hence head on collisions are more likely and acceleration becomes more efficient

from geometry to acceleration

- split electron population into two half spheres; one moving downstream (n⁺), the other moving upstream (n⁻)
- connecting the slices via advection of electrons between them
- shock is represented by jump in bulk velocity u between neighboured zones

- in shock frame: $v_{bulk}^1 = u_u = -V_S$, $v_{bulk}^2 = u_d = V_P V_S$, $R = \frac{u_u}{u_d}$
- relativistic treatment yields $V_P = \frac{V_S(R-1)}{R-V_S^2}$

- in shock frame: $v_{bulk}^1 = u_u = -V_S$, $v_{bulk}^2 = u_d = V_P V_S$, $R = \frac{u_u}{u_d}$
- relativistic treatment yields $V_P = \frac{V_S(R-1)}{R-V_s^2}$
- scattering is controlled via the probability for an electron to change its propagation direction (including the boost into the new frame of reference)

Acceleration - Fermi II

- stochastic acceleration independent of presence of shock
- repeated scattering of relativistic particles leads to acceleration second order in bulk velocity
- included in model as diffusion in momentum space

Acceleration - Fermi II

- stochastic acceleration independent of presence of shock
- repeated scattering of relativistic particles leads to acceleration second order in bulk velocity
- included in model as diffusion in momentum space

Fermi-II acceleration included in kinetic equation

$$\frac{\partial F}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \cdot \left(\langle \dot{p}_{FII} \rangle \frac{\partial F}{\partial p} + \dot{p}_{cool} \cdot F \right) \right] + S(\mathbf{x}, \mathbf{p}, t)$$

with $\langle \dot{p}_{FII} \rangle = p^2 \frac{V_A^2}{9\kappa_{\parallel}} = p^2 D$

 $V_A\ldots$ Alfvén velocity; $\kappa_{\parallel}\ldots$ parallel diffusion coefficient

time evolution of photon density

Radiation

lius-Maximilians

WURZBURG

$$\frac{\partial N}{\partial t} = -c \cdot \kappa_{\nu, \text{SSA}} \cdot N + \frac{4\pi}{h\nu} \cdot (\epsilon_{\nu, \text{IC}} + \epsilon_{\nu, \text{sync}})$$

- κ_{ν,SSA} Synchrotron Self Absorption coefficient calculated using the Melrose Approximation
- $\epsilon_{\nu,\rm IC}$ changes due to invers compton scattering full integration of photon and electron density using the Klein-Nishina cross section
- $\epsilon_{\nu,\text{sync}}$ yields due to synchrotron radiation integration of electron density using the Melrose approximation for a single electron spectrum

see Richter and Spanier 2012 for details

update shock properties

electrons

- calculate the change in electron density for each slice due to convection from/to neighbouring regions and the source function
- compute backreaction of photon density (inverse compton) on electrons
- integrate the Vlasov-Equation in momentum space in each slice
- perform scattering of electrons from one half-space into the other due to pitch angle scattering

photons

- compute synchrotron power
- calculate synchrotron self absorption
- compute inverse compton gains and losses
- update photon density

- $\bullet\,$ due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via OpenCL

- \bullet due to statistical approach to Fermi I higher $\gamma_{\rm max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

CPU

GPU

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

CPU

GPU

update shock

lius-Maximilians

WURZBURG

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

CPU

GPU

update shock

update electrons

inverse compton scattering

lius-Maximilians

WURZBURG

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

CPU

GPU

update shock

update electrons

inverse compton scattering

 \leftarrow

WURZBURG

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

update photons

pair production

WURZBURG

- \bullet due to statistical approach to Fermi I higher $\gamma_{\it max}$, hence smaller dt
- compute inverse compton scattering in each slice $\Rightarrow \mathcal{O}(N_z \cdot N_\nu \cdot (N_\gamma N_\nu))$
- \Rightarrow calculate double integrals on GPUs via *OpenCL*

Results

Radio spectrum

Julius-Maximilians-

WÜRZBURG

Radio spectrum

synchrotron self absorption by a powerlaw distribution

equivalence of brightness and kinetic temperature leads to a flux

 $F_{
u} \propto
u^{\frac{5}{2}}$

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Electron distribution at different distances to the shock.

Julius-Maximilians-

WÜRZBURG

Radio spectrum

Effect of significant larger simulation region.

Adiabatic expansion

Effect of additional adiabatic expansion.

Outlook - hadronic processes

schematic of the dominant photohadronic processes [from: Weidinger 2012]

lius-Maximilians-

Γραιτχι

WÜRZBURG

UNI

Outlook - hadronic processes

schematic of the dominant photohadronic processes [from: Weidinger 2012]

lius-Maximilians

WÜRZBURG

Hadronic processes

 cooling (and possibly acceleration) of intermediates is relevant in AGNs

Julius-Maximilians

WÜRZBURG

- ⇒ using model by Hümmer et al. 2010
- How does this influence resulting SEDs and variation timescales?
- calculation of realistic, flavour splitted neutrino spectra

Muon lifetime vs. dominant cooling process [from: Weidinger 2012]

- self consistent spatially resolved SSC model
- addition of photohadronics (in progress)
- although higher numerical costs, reasonable computation times thanks to GPGPU
- access to radio information via adiabatic expansion
- investigate cooling and reacceleration effects on hadronic modelling
- also: time variability, morphology (epecially magnetic fields)

spatial resolution brings new opportunities, but new problems, too

Thank you

S. Hümmer, M. Rüger, F. Spanier, and W. Winter. Simplified Models for Photohadronic Interactions in Cosmic Accelerators. *Astrophys. J.*, 721: 630–652, Sept. 2010. doi: 10.1088/0004-637X/721/1/630.

Bibliography I

- S. Richter and F. Spanier. A Spatially Resolved SSC Shock-In-Jet Model. International Journal of Modern Physics Conference Series, 8:392, 2012. doi: 10.1142/S2010194512004977.
- M. Weidinger and F. Spanier. Modeling the Emission from Blazar Jets:. the Case of PKS 2155-304. *International Journal of Modern Physics D*, 19: 887–892, 2010. doi: 10.1142/S0218271810017159.
- M. Weidinger, M. Rüger, and F. Spanier. Modelling the steady state spectral energy distribution of the BL-Lac Object PKS 2155-30.4 using a selfconsistent SSC model. *Astrophysics and Space Sciences Transactions*, 6: 1–7, Jan. 2010. doi: 10.5194/astra-6-1-2010.

WÜRZBURG

Logarithmic grids

calculations over several orders of magnitudes in Lorentz factor γ and photon energy $\nu \Rightarrow$

Logarithmic grids

calculations over several orders of magnitudes in Lorentz factor γ and photon energy $\nu \Rightarrow$

use logarithmic grids

• choose
$$N_\gamma$$
, $i \in [0, N_\gamma - 1]$

• fraction of neighbouring grid points $\delta_{\gamma} = \frac{\gamma_{i+1}}{\gamma_i} = \left(\frac{\gamma_{max}}{\gamma_{min}}\right)^{\frac{1}{N_{\gamma}-1}}$

$$ullet$$
 get grid points via $\gamma_i=\gamma_{ extsf{min}}\cdot\delta^i_\gamma$

• cell interfaces
$$\gamma_i^{interface} = \gamma_{i-1/2} = \gamma_{min} \cdot \delta_{\gamma}^{(i-\frac{1}{2})} = \sqrt{\gamma_{i-1} \cdot \gamma_i}$$

• cell size
$$\gamma_i^{interval \ size} = \gamma_{i+1}^{interface} - \gamma_i^{interface}$$

Logarithmic grids

calculations over several orders of magnitudes in Lorentz factor γ and photon energy $\nu \Rightarrow$

use logarithmic grids

• choose
$$N_\gamma$$
, $i\in [0,N_\gamma-1]$

• fraction of neighbouring grid points $\delta_{\gamma} = \frac{\gamma_{i+1}}{\gamma_i} = \left(\frac{\gamma_{max}}{\gamma_{min}}\right)^{\frac{1}{N_{\gamma}-1}}$

• get grid points via
$$\gamma_{\it i}=\gamma_{\it min}\cdot\delta^{\it i}_\gamma$$

• cell interfaces
$$\gamma_i^{interface} = \gamma_{i-1/2} = \gamma_{min} \cdot \delta_{\gamma}^{(i-\frac{1}{2})} = \sqrt{\gamma_{i-1} \cdot \gamma_i}$$

• cell size $\gamma_i^{interval \ size} = \gamma_{i+1}^{interface} - \gamma_i^{interface}$

integrations are performed via second order *simpson's rule*, generalised for log-grids