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Abstract

In this project a numerical approach to the description of indistinguishable, interacting,
ultra cold bosons on a ring in terms of Path Integral Monte Carlo (PIQMC) was realised.
The code, based on a previous project dealing with electrons, was verified with analytical
results (where possible) as well as results obtained from other numerical solutions and showed
very good consistency. Different kinds of interactions were implemented, most importantly
a dipole-dipole interaction. The ground state configuration for this system was discovered.
Furthermore an attempt was done to force the system to show frustration behaviour, usually
known from systems including antiferromagnetically coupling. We were able to show that
frustration can be realised in such a system, although an experimental realisation would
be, if possible at all, quite challenging. Finally the behaviour of the frustration signature
compared to temperature and the number of particles was observed. PIQMC turned out
to be well suited for a many body system with arbitrary interactions in the used ultra low
temperature regime.
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1 Introduction

In this project the properties of a many body quantum system in form of an atomic ring was
investigated. This was done numerically by using the path integral quantum Monte Carlo
method (PIQMC). The potentials that were implemented are an external potential along the
ring as well as pair interactions, namely a Lennard Jones like repulsive and an attractive dipole
potential.

1.1 Atomic rings

An atomic ring is a one dimensional (or quasi one dimensional) system with periodic boundary
conditions. In our approach we used an exact one dimensional system, what can be realised ex-
perimentally by making the ring confinement sufficiently high to only allow the first (transverse)
quantum state to be occupied at the temperatures used.

For many years such systems were used for theoretical modelling, since the one dimensionality
and the periodic boundary conditions, and therefore no finite size effects, make it easy to handle.
Recently it became possible to realise such systems experimentally for ultra cold atoms. This
was achieved by an optical lattice which, in its easiest form, is created by counterpropagating
beams of laser light. These beams are made to interfer creating a standing wave and therefore
a spatially constant, oscillating periodic intensity field. If the oscillation is sufficiently high, the
atoms can still be kept confined. The actual force keeping the atoms in place, is due to the
Stark shift, describing the dependency of the atomic states from an external electric field. The
form of the lattice can for example be manipulated using spatial light modulators that are used
as configurable diffractive components. [8]

Given these new possibilities, results at finite temperatures for such systems become impor-
tant for what the PIQMC is perfectly suited.

1.2 Tonks-Girardeau gas

One of the most interesting ultra cold quantum systems is the so called Tonks-Girardeau gas,
proposed already 40 years ago [10]. It is a gas of Bose particles, confined in one dimension, in
which the repulsion between the bosons dominate the behaviour of the system. The motion of
two next neighbours are strongly correlated and two particles cannot be at the same position
simultaneously. Therefore this repulsions mimics, although one deals with bosons, the Pauli
principle. However, the statistics of such a gas is neither fermionic nor bosonic, since the
particles in such a gas can all occupy the same momentum state which fermions cannot. Though
mathematically there is a theorem mapping such strong repulsive bosons on non interacting
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fermions [10]. It is described as an isomorphism, i.e. a mapping that is homomorph in both
directions and therefore structure-preserving [10].

For long time there was no experimental realization of such a system until in 2004 an ex-
periment realising a Tonks-Girardeau gas was presented [12]. The basic setup was a very strong
two dimensional lattice, forcing the atoms into tubes and prohibiting tunnelling between them.
By applying a third lattice potential in the remaining direction and increasing it, the effective
mass was changed and thus the interactions became more important (tunnelling in the third
direction was still allowed). As the interacting energy overcame the tunnel energy, tunnelling
into occupied lattice points became suppressed, what produced the Tonks-Girardeau regime.

1.3 Dipolar gases

Another system, in a sense an extension to the above mentioned Tonks-Girardeau gas, sometimes
called the Super-Tonks-Girardeau regime, is a one dimensional dipolar gas. Very recently such
systems were under investigation in both, quasi one dimensional [3] and exact one dimensional
traps in [1] and [2]. All of them included a repulsive potential independent of the alignment,
i.e. not introducing additional dimensions for the dipole orientation, whereas in this project
the exact dipole-dipole interaction was implemented taking the orientation of every dipole into
account.

1.4 Frustrated systems

The term frustration was introduced by Gerard Toulouse in 1977 in his work on spin glasses [14].
Summarising, frustration is either caused by the fact, that a system cannot minimise competing
interactions or by a lattice or configuration that does not allow the components, e.g. spins, to
align in a unique way minimising the energy. The first observation of frustration was due to
Wanier in 1950 [15]. He investigated antiferromagnetically coupled Ising spins on a triangular
lattice and found its behaviour differing from a ferromagnetic coupled system. More precisely
he found the binding energy to be much smaller as well as the entropy not vanishing for zero
temperature.

1.5 The path integral quantum Monte Carlo method

The first applications of path integral theory, developed by Feynman in 1948 [5], were analytical
calculations in quantum electro dynamics [6] and the theory of liquid helium [7]. Consequently,
with increasing computer power, path integrals for liquid helium systems were calculated making
use of Monte Carlo Methods [4]. Today PIQMC is employed in a wide range of fields.
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The main advantages are the possibility to include arbitrary potentials and simulate in a
wide temperature range, i.e. not only obtain the ground state energy but also thermodynamic
averages of properties in systems at finite temperatures. Furthermore the method is, in principle,
independent of the geometry of the system to be observed and proceeds without putting in
any specific physical knowledge like trial wavefunctions. Difficulties are the large amount of
parameters possibly influencing the result whose influence has to be observed as well as the long
computing times that are necessary to reduce the statistical error sufficiently.

1.6 Report layout

Apart from this introduction this report is structured into four main sections. In the first
one I will review the theoretical basis of the PIQMC method. The description of a system
in terms of path integrals will be derived and the principles of Monte Carlo and Metropolis
simulations are presented. In the second part the actual implementation of the PIQMC algorithm
is described. The handling of physical features like symmetrisation and calculation of the total
energy are specified. The following part consits of the obtained results for the above mentioned
systems. These are basically particle distributions, correlation functions as well as temperature
dependences of physical quantities. Finally in the conclusion I will summarise the results, point
out the essentials as well as problems. Following on from this recommendations for further
research will be made.

2 Theory

In order to understand how the PIQMC algorithm works one needs some theoretical knowledge
about the fundamental physics employed in these simulations. This is mainly the Path Integral
Theory introduced by Feynman in 1948 [5]. Furthermore one needs the so called Monte Carlo
Approach allowing us to sample through the infinite number of possible paths that are given by
Feynman’s formulation.

2.1 Path integral theory

In his work Feynman describes a new formulation of quantum mechanics based on paths through
configuration space and closely connected to Lagrange’s formulation of classical mechanics. In
this formulation Lagrange’s equations, determining the actual realized path of a system in time
through the configuration space from A to B, are derived by minimising the action of the system
in question.

S =
∫ B

A
L(~x, ~̇x, t)dt (1)

6



Here L is the Lagrangian of the system and ~x is the dN -dimensional vector in configuration
space, ~̇x the corresponding velocity. Why nature behaves as this process tells us, no one really

Figure 1: paths from A to B

knows.
Feynman’s approach answers this question by saying, that actually all imaginable paths are

realised, but we only “see” the interference of all these possibilities. More precisely one can
express the wavefunction at (x, t) (given a start point (x0, t0) with amplitude 1) as

Ψ(x, t) ∝
∑

C(x0,t0)→(x,t)

e
i
~S[C] (2)

This implies that the probability to find a particle at position x at time t after it started at
(x0, t0), known as the propagator K is

K(x, t, x0, t0) = 〈x|e−
i
~H·(t−t0)|x0〉 ∝

∑
C(x0,t0)→(x,t)

e
i
~S[C] (3)

(the definition of the propagator is only valid for time independent Hamiltonians).
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2.1.1 Derivation of the propagator

Now we will derive the exact expression of the propagator in terms of path integrals starting
from the definition

K(x, t, x0, t0) = 〈x|e−
i
~H·(t−t0)|x0〉 (4)

Expanding the time evolution into two shorter steps and inserting a 1 gives

K(x, t, x0, t0) = 〈x|e−
i
~H·(t−t1)e−

i
~H·(t1−t0)|x0〉

= 〈x|e−
i
~H·(t−t1)

∫
dx1|x1〉〈x1|e−

i
~H·(t1−t0)|x0〉

=
∫

dx1K(x, t, x1, t1) ·K(x1, t1, x0, t0) (5)

If we do this N − 1 times and defining a time period of τ = (t− t0)/N we get

K(x, t, x0, t0) = 〈x|(e−
i
~H·τ )N |x0〉

=
∫
· · ·
∫

dx1 · · · dxN−1K(x, t, xN−1, tN−1) · · ·K(x1, t1, x0, t0)

=
∫
Dx

N∏
i=1

K(xi−1 → xi) (6)

where in the last line we set x = xN and used

∫
Dx =

N−1∏
i=1

∫
dxi (7)

In literature D is often used for the continuous limit∫
Dx = lim

N→∞

N∏
i=1

∫
dxi (8)

but since we will, for the actual algorithm, return to a discrete description anyway, we will keep
the above description.

Here we can already see the idea of the derivation, since, for a sufficient large N, this integral
is equivalent to the sum over all paths and is therefore called a path integral. Now we still have
to show the connection between the propagator and the action.

The idea behind the following is to approximate each (short) time evolution step with only
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the linear term. For N towards infinity this will converge to the exact result.

K(xi+1, ti + τ, xi, ti) = 〈xi+1|e−
i
~H·τ |xi〉

= 〈xi+1|
(

1− i

~
H · τ +O(τ2)

)
|xi〉

= 〈xi+1|xi〉 −
iτ

~
〈xi+1|H|xi〉+O(τ2) (9)

The first bracket of equation (9) is a delta distribution that can be expressed as

Figure 2: linear approximation for small time steps

〈xi+1|xi〉 = δ(xi+1 − xi) =
∫

dpi
2π

e
i
~pi(xi+1−xi) (10)

To evaluate the second term of (9) we have to put in a 1 in form of a sum over momentum states
to handle the momentum operator:

〈xi+1|H|xi〉 = 〈xi+1|
(
p̂2

2m
+ V (x̂)

)(∫
dpi
2π
|pi〉〈pi|

)
|xi〉

=
∫

dpi
2π

(
p2
i

2m
+ V (xi+1)

)
〈xi+1|pi〉〈pi|xi〉

=
∫

dpi
2π

(
p2
i

2m
+ V (xi+1)

)
e
i
~pi(xi+1−xi) (11)

To avoid the asymmetry in this equation xi+1 and pi are usually replaced by an average value
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for the time-step in question. The actual choice is arbitrary as long as we take the continuous
limit, i.e. letting the time steps (and therefore the spatial steps as well) go to zero. Putting the
results (10) and (11) into (9) we obtain

K(xi+1, ti + τ, xi, ti) =
∫

dpi
2π

e
i
~pi(xi+1−xi) − iτ

~

∫
dpi
2π

(
p2
i

2m
+ V (xi)

)
e
i
~pi(xi+1−xi) +O(τ2)

=
∫

dpi
2π

e
i
~pi(xi+1−xi)

(
1− iτ

~

(
p2
i

2m
+ V (xi)

)
+O(τ2)

)
=

∫
dpi
2π

e
i
~pi(xi+1−xi)e−

iτ
~ H(pi,xi)

(
1 +O(τ2)

)
(12)

For the last equation we again employed the equivalence between the first two terms and the
exponential-function for small τ . With this result we finally can return to equation (6) while
using the linear approximation for the velocity ẋi = (xi+1 − xi)/τ and finally neglecting the
higher orders we obtain

K(x, t, x0, t0) =
∫
Dx

N−1∏
i=0

(∫
dpi
2π

)
e
iτ
~
PN−1
i=0 (piẋi−H(pi,xi)) (13)

If we put in the Hamiltonian and perform the N gaussian integrals over the pi we obtain

K(x, t, x0, t0) =
∫
Dx

N−1∏
i=0

(∫
dpi
2π

)
e
iτ
~
PN−1
i=0 (

p2i
2m
−V (xi))

=
(
m~

2πiτ

)N/2 ∫
Dx e

iτ
~
PN−1
i=0 (

p2i
2m
−V (xi)) (14)

Here the exponent is equal to the discretised integral of the Lagrangian over time (again this is
only valid for small τ), so we can replace it by the action

K(x, t, x0, t0) =
(
m~

2πiτ

)N/2 ∫
Dx e

i
~S[x] (15)

where S depends on all N + 1 coordinates (as well as the velocities at these positions) from x0

to x. So finally we showed that (2) is correct and even got the prefactor. The above derivation
largely followed the one of Feynman’s original paper. [5]

Today the Path Integral formalism is intensively used not only in particle physics and Quan-
tum Monte Carlo Simulations. It provides clear and intuitive explanations of various quantum
effects, e.g. the Aharonov-Bohm effect, following from this particle statistics (anyons) up to the
relation between magnetic monopoles and charge quantisation [11].
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2.2 From the propagator to the density matrix

As we will see in this section the above derived propagator is closely connected to statistical
mechanics, although it describes dynamics. First we should remember the central quantity of
quantum statistics, the density matrix

ρ =
∑
i

|i〉〈i| · p(i) (16)

which gives, for the canonical ensemble

ρ =
∑
i

|i〉〈i| · e−βEi (17)

with β = 1/(kBT ). Now we start again from the definition of the propagator (4)

K(x, t, x0, t0) = 〈x|e−
i
~H·(t−t0)|x0〉

= 〈x|e−
i
~H·(t−t0)

∑
i

|i〉〈i|x0〉

=
∑
i

〈x|i〉〈i|x0〉e−
i
~Ei·(t−t0) (18)

ρ(x0, x) = 〈x|ρ|x0〉 =
∑
i

〈x|i〉〈i|x0〉e−βEi (19)

Obviously the last to right hand sites are equal, if i(t− t0)/~ = β. So we can express the density
matrix with the propagator (we can set t0 = 0 since our Hamiltonian is time independent and
therefore the system time-invariant)

ρ(x0, x) = K(x,−iβ/~, x0, 0) (20)

To express this with an actual path integral we have to go back to equation (14) and replace τ
by

τ =
t− t0
N

=
−iβ~
N

(21)

yielding

ρ(x0, x) =
(
m~

2πiτ

)N/2 ∫
Dx e

β
N

PN−1
i=0 (

p2i
2m
−V (xi)) (22)

Since a velocity, while evaluating a propagator in imaginary time, isn’t well defined, we replace
p by

p = m
∆x
τ

= im
∆xN
β~

(23)
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and therefore reaching our final result

ρ(x0, x) =
(
m~

2πiτ

)N/2 ∫
Dx e−

PN−1
i=0 (

m∆x2
i N

2β~2 + β
N
V (xi)) (24)

Now we can, theoretically, calculate the elements of the density matrix, particularly the diagonal
elements by setting x = x0, by evaluating the path integral. This is, however, still impractical
since one would need infinite computing power to calculate the precise values of the integrals.
To solve this problem and create an algorithm that computes a good approximation we need to
understand the principle of so called Monte Carlo Simulations.

2.3 Monte Carlo simulations

The Monte Carlo Method makes it possible to calculate many kinds of integrals. This is done
with, as the name suggests, a probability element. A simple example is the Integral over an
arbitrary function ∫ 1

0
f(x) ≈ 1

N

N∑
i=1

f(xi) (25)

This equation is true, if the xi are equally distributed between 0 and 1. One can come as close
to the true value as possible raising the N sufficiently.

Another possibility is shown with the next example in which we describe an algorithm to
compute π. One has to generate equally distributed coordinate pairs in a 1×1 square and check

Figure 3: calculating π with Monte Carlo simulation

whether they lie in the circle or not. The ratio between the number of pairs in the circle and
the total number will give π/4 if one does enough steps.
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2.4 Metropolis algorithm

The above described method is in general valid for any integral, but in some cases somehow
impracticable. If one has for example an integrand weighted with a density probability ρ like

〈A〉 =
∫

dxρ(x)A(x) (26)

(e.g. the mean value of A over configuration space) the so called Metropolis algorithm is much
more efficient since it doesn’t waste time sampling through regions of configuration space in
which the system hardly is found and therefore the probability is extremely low (and so the
contribution to the integral is extremely small). It samples through the coordinate space in
question in the following way:

1. Create a random start point x0 (here the index refers to the Metropolis step rather then
the timeslice as above).

2. Evaluate function at this point.

3. Create a new point
x′ = xi + r ·∆x (27)

where r is a random number r ∈ [−1, 1] and ∆x a stepwidth that has to be chosen
appropriately (see next step).

4. Set the next point

xi+1 =

x′, if ρ(x′)
ρ(xi)

> s

xi, otherwise
(28)

(where s ∈ [0, 1] is a random number) and go back to 2. until N is reached.

The stepwidth ∆x of step 3 has to be chosen in a way, that the average acceptance rate in step 4
(i.e. xi+1 = x′) is around 50%. This assures, that all important regions of the configuration space
are sampled and no computing power is wasted elsewhere. An extension to higher dimensions
is easily possible by doing the same thing for the other dimensions and choosing the dimension
in which to do a trialmove randomly.

3 Numerical approach

Now we are able, when putting together all the parts of the previous paragraph, to actually
analyse the statistics of a quantum mechanical system. What we want is to calculate expectation
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values like with equation (26) using the metropolis algorithm. The probability density ρ we
obtain from the density matrix, which we can, due to equation (24), express as a path integral.
Because of the discrete and finite nature of computers, we have to use a finite N and discretise
the integrals to sums over all paths we are sampling through. It is crucial, that we are not only
sampling a single vector, but a whole chain of N such vectors. This is due to the way we describe
our system. It is no longer represented by a wavefunction in space-time, but by a (weighted)
sum over all paths through space-time.

3.1 Monte Carlo step

A single Monte Carlo or, more correctly, Metropolis step, roughly described in section 2.4, looks
as follows.

We choose from our multidimensional chain (number of particles × number of timeslices (N)
× number of spatial dimensions) a random particle, timeslice and direction. Now all parts of
the action containing the position of that part of the chain are calculated and stored. The next
step is to perform a trial move, i.e. change the position by a random value (see point 3 of section
2.4). Again the parts of the action, that just have changed are calculated. By comparing the
new and old value of the action following point 4 the trial move is either accepted or not. In
both cases the quantities one is interested in are now evaluated and stored in order to calculate
the averages at the end of the whole run.

3.2 Calculating the action

In order to determine what actually needs to be calculated one should have a look back at
equation (24). One finds that the density matrix factorises in the contribution of every small
time-step. So one just has to take the step from and towards the neighbouring slices, respectively,
of the one in question into account, since the contributions of all other steps would cancel out
each other when applying (28).

Denoting the coordinate we have chosen xi (with the index referring to the timeslice), we
have to calculate

ρ(xi) = ρ(xi−1, xi) · ρ(xi, xi+1) ∝ e
−
„
m(xi−xi−1)2N

2β~2 + β
N
V (x̃i−1)

«
· e
−
„
m(xi+1−xi)

2N

2β~2 + β
N
V (x̃i)

«
(29)

We remember that the x̃i in the potential are an average value between xi and xi+1, but that the
choice is, for small τ , actually arbitrary. So for simplicity we choose x̃i−1 = xi and x̃i = xi+1.
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Figure 4: trial move for single particle path at xi

We can rewrite (29)

ρ(xi) ∝ e−
β
N
V (xi)e−

β
N
V (xi+1)

(
e−

m(xi−xi−1)2N

2β~2 · e−
m(xi+1−xi)

2N

2β~2

)
(30)

In order to employ the Metropolis algorithm one has now just to calculate the ratio of this
quantity after and before the trial move. Since only xi was changed the potential parts of xi+1

will cancel out each other. So this choice will, especially for the (anti-)symmetric case, make life
much easier.

ρ(x′i)
ρ(xi)

= e−
β
N

(V (x′i)−V (xi)) · e−
m(x′i−xi−1)2N

2β~2 · e−
m(xi+1−x

′
i)

2N

2β~2

e−
m(xi−xi−1)2N

2β~2 · e−
m(xi+1−xi)2N

2β~2

(31)

As it stands this can be further simplified, but for better comparison to the extension described
in the next section we let it stay as it is.

Until this point the indices referred to the timeslice and dashed quantities are those after
the trial move was performed. Since in the next paragraph contributions to the density matrix
with mixed particle numbers will occur and to keep consistency we will use upper indices for
the particle in question.
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3.3 Symmetrisation

Since in this project indistinguishable bosons are the matter of interest one has to take the
statistical interaction into account. For bosons this can be obtained by symmetrising the many
particle wavefunction, i.e. the wavefunction has to be invariant when swapping two particle’s
coordinates. For a two particle system this can be achieved with

Ψ(x1, x2) =
1√
2

(
φ1(x1)φ2(x2) + φ1(x2)φ2(x1)

)
(32)

where for fermions one would have to replace the plus by a minus. For n particles this can be
expressed by the permanent of the Slater-matrix

Ψ(x1, x2, . . . , xn) =
1√
n!
· perm


φ1(x1) φ1(x2) · · · φ1(xn)
φ2(x1) φ2(x2) · · · φ2(xn)

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)

 (33)

The permanent of a matrix is similar to the determinant, except the alternating sign is dropped.
Since we are in the regime of small steps in time while approximating the wavefunction with a
sum over classical paths, our wavefunctions φi are localised and so (32) can be rewritten:

|Ψ〉 =
1√
2

(
|x1〉|x2〉+ |x2〉|x1〉

)
(34)

Recall the definition of the propagator (4), that it is the amplitude of finding a particle at (x, t)
after it started at (x0, t0). Now we have to adapt the formulation, since we have two particles
that are indistinguishable. The propagator is the amplitude of finding the system in a uniform
superposition of the two possibilities of distributing the particles over x1 and x2 at time t after
they have started in a similar superposition, but with coordinates x1

0 and x2
0 at time t0. This

yields for one time step

K(x1
i+1, x

2
i+1, τ, x

1
i , x

2
i , 0) = 〈Ψ′|e−

iτ
~ H|Ψ〉

=
1√
2

(
〈x1
i+1|〈x2

i+1|+ 〈x2
i+1|〈x1

i+1|
)

e−
iτ
~ H

1√
2

(
|x1
i 〉|x2

i 〉+ |x2
i 〉|x1

i 〉
)

=
1
2

(〈x1
i+1|〈x2

i+1|e−
iτ
~ H|x1

i 〉|x2
i 〉+ 〈x1

i+1|〈x2
i+1|e−

iτ
~ H|x2

i 〉|x1
i 〉

+ 〈x2
i+1|〈x1

i+1|e−
iτ
~ H|x1

i 〉|x2
i 〉+ 〈x2

i+1|〈x1
i+1|e−

iτ
~ H|x2

i 〉|x1
i 〉) (35)
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Again we choose the potential to be evaluated at the mid points and since it doesn’t depend on
the order of the particle, it is the same in all summands. That leaves the kinetic energies to be
evaluated. They consist now of two factorising operators, each acting on different sub-Hilbert
spaces and can therefore be calculated separately. For the first summand the derivation is

〈x1
i+1|〈x2

i+1|e−
iτ
~ H|x1

i 〉|x2
i 〉 = 〈x1

i+1|〈x2
i+1|e−

iτ
~ T1 · e−

iτ
~ T2 |x1

i 〉|x2
i 〉

= 〈x1
i+1|e−

iτ
~ T1〈x2

i+1|x1
i 〉e−

iτ
~ T2 |x2

i 〉 (36)

The bra and ket vectors in the middle of (36) belong to different sub-Hilbert spaces and therefore
can be swapped

= 〈x1
i+1|e−

iτ
~ T1 |x1

i 〉〈x2
i+1|e−

iτ
~ T2 |x2

i 〉 ∝ K(x1
i+1, τ, x

1
i , 0) ·K(x2

i+1, τ, x
2
i , 0) (37)

(the last ∝ is due to the potential part we neglected before and now put in again)
With this result and again the fact that the particles are indistinguishable we find that the

first and last summand as well as the second and third of (35) will give the same and so we end
up with

K(x1
i+1, x

2
i+1, τ, x

1
i , x

2
i , 0) = K(x1

i+1, τ, x
1
i , 0) ·K(x2

i+1, τ, x
2
i , 0)+K(x2

i+1, τ, x
1
i , 0) ·K(x1

i+1, τ, x
2
i , 0)
(38)

That is exactly what one expects intuitively. Due to the indistinguishability both possible paths
are realised simultaneously and their probabilities just add.

If we again use (20) and go over to the density matrix we obtain

ρ(x1
i , x

2
i , x

1
i+1, x

2
i+1) = ρ(x1

i , x
1
i+1) · ρ(x2

i , x
2
i+1) + ρ(x1

i , x
2
i+1) · ρ(x2

i , x
1
i+1) (39)

The derivation above can be generalised for n particles similarly to (33):

ρ(x1
i , x

2
i , . . . , x

n
i , x

1
i+1, x

2
i+1, . . . , x

n
i+1) = perm


ρ(x1

i , x
1
i+1) ρ(x1

i , x
2
i+1) · · · ρ(x1

i , x
n
i+1)

ρ(x2
i , x

1
i+1) ρ(x2

i , x
2
i+1) · · · ρ(x2

i , x
n
i+1)

...
...

. . .
...

ρ(xni , x
1
i+1) ρ(xni , x

2
i+1) · · · ρ(xni , x

n
i+1)


(40)

To calculate all parts of the density matrix that change when doing a trial move on xji ,
illustrated in Fig. 5 for two particles, we have to calculate four such permanents, since we need
two transitions, one from the previous and one towards the next timeslice, each to be calculated
before and after the trial move.
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Figure 5: trial move for a two particle path at xi

ρ(xj′i )

ρ(xji )
=
ρ(xj′i , t− τ, t) · ρ(xj′i , t, t+ τ)

ρ(xji , t− τ, t) · ρ(xji , t, t+ τ)
(41)

Here each ρ refers to a permanent of single particle density matrices. Since permanents are
linear in every row and column, respectively and we chose the position to evaluate the potential
appropriate, we can, in the numerator, take out 2n potential parts of which 2n − 1 will cancel
out with the corresponding matrix in the denominator as seen before in (31). This simplifies
the matrix of equation (40) to the “kinetic matrix” T with only the kinetic parts of the density
left. Actually the ρ’s in the upper equation do not only depend on xji and xj′i , respectively, but
also on all other coordinates of the three timeslices that have to be evaluated, due to interaction
potentials. Now we should use ~x and ~x′, containing all necessary coordinates and the latter one
with xj′i rather than xji . Using this notation we end up with

ρ(~x′)
ρ(~x)

= e−
β
N

(V (~x′)−V (~x)) · perm(T (~x′, t− τ, t)) · perm(T (~x′, t, t+ τ))
perm(T (~x, t− τ, t)) · perm(T (~x, t, t+ τ))

(42)

3.3.1 Calculating the permanent

As explained above it is necessary to calculate the permanent of the Slater-matrix in order to
satisfy the bosonic symmetrisation relations. In my code an algorithm due to the so called
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Ryser-formula (Eqn. 43) [13] is employed. It calculates the permanent of a (n× n) matrix A as
follows:

perm(A) =
∑

S⊆{1,...,n}

(−1)|S|
n∏
i=1

∑
j /∈S

aij (43)

Here the first sum is over all (n × k) submatrices (k ≤ n) of A. There are 2n possibilities
of forming such a submatrix, what gives a (best case) total computational cost of O(2n · n).
However, the algorithm in my code has a cost of O(2n · n2).

Algorithms based on this formula are the so far fastest known ways of calculating a permanent
for general matrices. There is, however, another way of including symmetrisation relations,
allowing a significant higher number of particles being simulated. I will come back to this in the
discussion.

3.4 Calculating the total energy

One of the main quantities of interest in ground state simulations like described above, is the
ground state energy of the system. It consists of a kinetic and a potential part. Because we are,
in PIQMC simulations, usually only sampling through real space, but not momentum space,
evaluation the potential energy is simple, but the kinetic part is not. We obtain the kinetic part
of the action by the ratio of spatial- and time-step, but since our time is complex, we cannot use
it to calculate an actual physical quantity. The solution to that problem is the Virial Theorem,
connecting average kinetic energy to the average potential energy. This is perfectly suitable,
since in Monte Carlo simulations one can calculate only averages anyway. The derivation of the
theorem is presented in the next paragraph.

3.4.1 The Virial theorem

We can write the kinetic energy as a function of momentum and velocity of all particles and
rewrite it employing the product rule of derivation.

2T =
∑
i

~pi · ~vi =
d
dt

(∑
i

~pi · ~ri

)
−
∑
i

~ri · ~̇pi (44)

Now we will calculate the average with respect to time of both sides. It is defined as

f̄ = lim
τ→∞

1
τ

∫ τ

0
f(t)dt (45)
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If f(t) can be expressed as the time derivative of a bounded function F (t), we find the average
of that function vanishing

f̄ = lim
τ→∞

1
τ

∫ τ

0

dF (t)
dt

dt = lim
τ→∞

F (τ)− F (0)
τ

= 0 (46)

If we assume a system in a finite region of space with finite velocities, the first summand of (44)
is bounded and therefore its average vanishes. Using this and the Newton’s equation of motion
as well as the definition of force

~̇pi = ~Fi = −∂V
∂~ri

(47)

we obtain

2T̄ =
∑
i

~ri ·
∂V

∂~ri
(48)

where we used the notation ∂V
∂~r = ∂V

∂x ~ex + ∂V
∂y ~ey + ∂V

∂z ~ez with the unit vectors ~ei.
We can see that, as long as the gradient of the potential can be derived, one can calculate

the total (average) energy of the system Ē = T̄ + V̄ .

3.5 Program structure

Now as we have obtained all pieces that have to be included into the code we can have a look
onto the full structure of the code, summarised in the appendix C.

The code basically starts with the creation of a three dimensional array for storing the path
(recall: number of particles × number of timeslices (N) × number of spatial dimensions). Then
the actual path, i.e. the values for all points in the chain, is created wit more or less arbitrary.
However, it turned out that initialising the different particles side by side in certain regions that
do not overlap is reasonable. This is due to the fact, that if to particles are almost coinciding, the
implemented Lennard-Jones repulsion raises the potential energy enormously which can cause
large numerical errors. Furthermore initialising paths going around the ring several times can,
if an external potential is applied, cause convergence problems. Afterwards the total energy of
the initial path is calculated.

The next step is the initialisation of the system. This is necessary in order to bring the ran-
dom start path into the thermo dynamic equilibrium before starting the evaluation of quantities.
This is done without using symmetrisation due to the fact, that the initial path isn’t necessarily
in the regime appropriate for the algorithm, for example it might have time steps with extreme
high kinetic energies, what would cause the result of (42) to be 0/0 = NaN. The algorithm
would accept steps that shouldn’t be accepted and therefore won’t reach thermal equilibrium.
The code performs 10,000 initial Monte Carlo steps per particle, timeslice and dimension.
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After initialisation the code tries to find the optimal stepwidth for every dimension. This is
done by trying to get the acceptance rate as close as possible to 50%, as mentioned in section
2.4. A search algorithm is applied, evaluating each stepwidth with a thousand Monte Carlo steps
per particle and timeslice and then raising or lowering the stepwidth until the difference to 50%
acceptance rate is smaller than a defined value. These steps are already symmetrised. In order
to achieve the symmetric sampling efficiently, a second three dimensional array is introduced
which corresponds to the matrix T of equation (42), but stored for all transitions along the path.
After a trial move only the values that have changed are recalculated.

In order to keep track of the energy during calculation it is not necessary to calculate the
total energy of the whole path after every accepted trial move. It is only necessary to calculate
those parts of the energy that are influenced by the position in question before and, if accepted,
after the trial move. Now only the difference has to be added to the total energy, once evaluated
at the beginning.

4 Results

Following sections results obtained with the above described code will be presented. Starting
with the verification of the code simulating simple single particle systems, going over to many
particle bose systems to finally bosons with associated dipole moment. The basic system in
which the particles are simulated is a ring with a radius of several microns, i.e. a one dimensional
system with periodic boundary conditions. The particles used were given the mass of rubidium
atoms (e.g. used in [12]) m = 1.4192260 · 10−25kg.

4.1 Verification of the code

In the very beginning of the project the correctness of the code was tested with the most simple,
nontrivial system, the harmonic oscillator. This was mainly done to verify the code and to get
used to the various parameters the algorithm needs and their influence on convergence or even
the result, e.g. on the ground state energy. The outcome of this first part of the project is that
it finally worked and we were able to obtain the correct (analytical) result. Going ahead to the
atomic ring we encountered the problem, that there are no potentials for which analytical results
exist. In order to verify this extension of the code the resulting ground state energy is compared
with the result of a matlab program that solves the problem by discretising the Schrödinger
equation.

An external potential of the form

V ext = V ext
0 · (1 + cosϕ) (49)
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was used with V ext
0 = 10−10eV. The radius was set to R = 10µm.

The following plot (fig. 6) shows how the ground state energy behaves when lowering the
temperature as well as the energy obtained from the matlab code.
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Figure 6: Energy of a single boson in an external potential with V ext
0 = 10−10eV for three

different numbers of timeslices. Number of performed Monte Carlo steps was 2 ·109. The dotted
line marks the result obtained with a matlab code (E = 3.494 · 10−13eV ).

Unfortunately it is numerically impossible to simulate the system with temperatures much
higher than 10−7K due to the already mentioned problem of getting NaN s for the metropolis
algorithm for to high energies. Already for 10−8K even 2 trillion steps are not enough to sample
a symmetric gaussian wavefunction.

On the other hand too low temperatures cause the sampled energy to decrease linearly, what
is a well known phenomenon in PIQMC. This decrease can be delayed by increasing the number
of timeslices (i.e. the “length” of the chain representing the path).

Evidence that one really has to be in such a low temperature regime can be obtained by
analysing the thermal wavelength

λT =
h√

2πmkBT
(50)

A previous project observed quantum effects with electrons of (reduced) mass of order 10−32

at distances of ∼ 10nm at ∼ 10K. Now we have a seven orders of magnitude higher mass and
a length scale of ∼ 10µm. Putting this into the expression for λT one can see that tempera-
tures of order 10−9K are adequate. Also experimental realisations of atomic rings work with
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temperatures down to 10nK.
What one can see from the plot, is the energy goes down to the real value. The larger the

number of timeslices, the longer it stays at this level. We can conclude that it is possible to
obtain the ground state properties over a sufficient range of temperature of at least one order of
magnitude.

A verification of not only a single particle system, but an antisymmetrised two particle system
was also realised by comparing the obtained energy with the sum of the energies of the first two
states, given by the matlab code. The parameters used were V ext

0 = 10−10eV and R = 10µm
and the permanent was replaced by a function calculating the determinant instead.

Ematlab = 1.397 · 10−12eV

EPIQMC = 1.370 · 10−12eV

This corresponds to an error of less than 2% and gives strong reliability to the (anti-)symmetrisation
part of the code.
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Figure 7: The averaged energy against the number of performed Monte Carlo steps recorded
during a simulation with 2 · 109 steps at 0.5nK for a single boson in the external potential.

How fast a simulation converges to an equilibrium is shown in figure 7. In the simulation in
which this graph was obtained, 200 timeslices were used. One can see, that for more than 109
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steps the reached value is already a adequate approximation. Apparently the deviation becomes
much smaller for even higher numbers towards 2 · 109. For the following sections it should be
kept in mind, this number needs to be increased with the number of dimensions, the number of
particles and the number of timeslices. So sometimes a satisfying number of steps couldn’t be
reached due to extremely increasing run times.

4.2 Non-interacting indistinguishable bosons

The next step was to realise simulations with more particles and included symmetrisation. The
main problem here is the exponential increase in computing resources necessary for a sufficient
high number of steps (see section 3.3.1). This is pointed out in figure 8, where the used cpu-time
is plotted against the number of particles for the symmetrised as well as for the non-symmetrised
case.
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Figure 8: Used CPU time against the number of simulated particles. 109 Monte Carlo steps
were performed.

The main feature that one would like to observe is the developing difference between the
two cases with increasing particle number due to Bose-Einstein condensation. Since observable
differences in energy aren’t expected we focused on correlation quantities like the pair distance
distribution. Here the development of a hump at zero distance can be expected. Figure 9
was obtained by simulating 10 distinguishable and indistinguishable bosons, respectively in the
external potential already used in the previous section.

However, our simulations don’t show such a feature. The two distance distributions of
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Figure 9: Comparison of the distributions of the distance between two particles for distinguish-
able and indistinguishable bosons. Obtained from a simulation of 10 bosons in 5 · 107 steps at
0.1nK.

distinguishable and indistinguishable bosons don’t show a significant difference to each other.
The plotted difference between the counts of the two simulations is increasing towards zero
distance, but equally distributed vertical around zero counts, what is a known effect in PIQMC.

Another quantity related to condensation effects and observed by us is the so called connected
part of the correlation function. For a somehow distributed physical quantity r it is defined as
follows [9]

〈rirj〉conn = 〈rirj〉 − 〈ri〉〈rj〉 (51)

where 〈 〉 stands for the ensemble average.
It is positive if ri and rj are correlated, zero if uncorrelated and negative if anticorrelated.

The next plot (figure 10) shows this connected part against the number of particles again for
distinguishable and indistinguishable particles.

One can see a significant increase in the correlation from 6 particles on, what may indicate
an inceptive condensation. If this trend is continued for higher particle numbers couldn’t be
clarified, since the enormous runtime for increasing particle numbers only allowed to perform
5 · 107 steps in a reasonable amount of time. The results from these simulations partially
confirmed the observed trend, but showed a big uncertainty hence reliability is quite poor.
Nevertheless, the obtained reliable data motivates to try simulating higher numbers of particles
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Figure 10: The connected part 〈rirj〉conn against number of particles for both cases. Obtained
from a simulation of up to 8 particles with 109 steps at 0.1nK.

(see discussion).

4.3 Interacting indistinguishable bosons - the Tonks-Girardeau gas

To point out the effect of a repulsive hard core potential on a bose gas we will compare this
system with the non-interacting bose gas, to see the fundamental change of behaviour, and to
a fermi gas of non-interacting fermions, to see the similarities between these two systems. This
is realised by simulations with two particles to keep clearness. The repulsive potential used in
these simulations is the repulsive part of the Lennard-Jones potential.

V LJ =
1
2
V LJ

0

n∑
i

n∑
j 6=i

(
σ

dij

)12

(52)

where σ is a parameter for the effective range of the repulsion. V LJ
0 is the strength of the potential

usually chosen to be equal to the strength of the external potential V LJ
0 = V ext

0 = 10−12eV
(here).

In the following two plots (figures 11-12) the distribution of the particles on the ring as well
as the pair distance distribution between the two particles for the three cases are presented. For
the interacting case σ = R/15 was used.

The fundamental change in behaviour of the bose gas is most obvious in the distance distri-
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Figure 11: The particle distributions of indistinguishable bosons with and without interaction
as well as indistinguishable fermions without interaction. All simulated with 2 · 109 steps at
0.1nK.
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Figure 12: The pair distance distributions of indistinguishable bosons with and without inter-
action as well as indistinguishable fermions without interaction. All simulated with 2 · 109 steps
at 0.1nK.
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bution, changing from the maximum value at d = 0 to zero counts at this distance. Furthermore
one can see a transition from a single peak distribution to the development of two clearly dis-
tinguishable maxima. This transition is pointed out in greater detail in figure 13.
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Figure 13: The distribution of two particles for different values of σ. 2 ·109 steps were performed
at T = 0.1nK.

Although a mapping theorem between fermions and hard core repulsive bosons exists as
mentioned above, the distance distributions of the associated cases are still different in their
behaviour towards zero distance. In the fermionic case the curve goes directly down to (0/0)
whereas in the interacting bosons case distances slightly bigger than zero are extremely sup-
pressed before raising towards the maximum. This is due to the different occupation of momen-
tum states. The bosons still both occupy the lowest states, but at different positions. In contrast
to that, the average position of both fermions is still in the minimum of the potential. Since they
occupy the first and second state the distribution of the superposition of both particles looks
similar to the one of the bosons. But also here are differences in behaviour. So the probability
to find the particle in the minimum of the potential would never goes towards zero due to the
contribution of the first state having its maximum probability exactly there. On the contrary,
when letting σ go towards infinity, the propability in the minimum would go to zero, as one can
guess from figure 13.
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4.4 Interacting dipoles

The final extension to the code in this projet was the inclusion of a dipole moment for each
particle. To describe this system two new coordinates had to be introduced, described in the
next section. Furthermore a value for the dipole moment and a moment of inertia, in order to
calculate the kinetic part of the density matrix for the new coordinates, had to be chosen. For
the dipole one might think of an atom with an excited Rydberg state what can be approximated
by q = 1e and d ' 2Å. Furthermore we assumed a homogeneous sphere to calculate the moment
of inertia. So

p = q · d = 1e · 2Å = 2e · 10−10m (53)

and
J =

2
5
mr2 =

2
5
· 1.419 · 10−25kg ·

(
10−10m

)2 (54)

4.4.1 Coordinate system

In order to make clear what the following plots actually show, here the used coordinate system
is presented. The position of the dipole on the ring is specified by ϕ. The azimuth of the

Figure 14: chosen coordinate system

orientation of the dipolemoment is specified by θ with respect to a parallel of the axis to which
ϕ is associated. So for dipoles pointing exactly outwards the ring θ equals ϕ. The zenith is
specified by ϑ ∈ [0;π]. Dipoles pointing upwards exactly perpendicular to the plain in which
the ring lies have ϑ = 0.
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4.4.2 Dipolar gas ground state

The first thing to observe was how a gas of dipoles minimises its energy. Therefor three dipoles
were put into the previous described external potential with its minimum at φ = π. In addition
to the dipole interaction they are kept apart from each other by the the repulsive potential (52).

Figure 15: Pair θ-θ correlation for 3 dipoles confined near φ = π. Simulated at T = 0.1nK

In figure 15 one can see, that the dipoles are always aligned along the ring, since φ and θ

differ by π/2. Furthermore the values seem to be strongly correlated, the dipoles always pointing
in a similar direction. Together with the next plot (fig. 16), that shows how often a dipole is
found with a certain value of θ, we can conclude, that in the ground state of this system either
all dipoles pointing clockwise or counterclockwise around the ring and that these two cases are
equally common. The different height of the peaks is believed to only be due to the finite number
of steps.

When expending this result to a closed circle of dipoles, the basic result would not change,
since the periodic boundary condition of the system is somehow implicitly contained in the
configuration of the dipoles. They still would point all around the ring in the same direction
(with respect to the ring).
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Figure 16: Distribution of θ for 3 dipoles confined near φ = π. Simulated within 108 steps at
T = 0.1nK

4.4.3 Spin-like dipoles and frustration

As seen above, dipoles that are not constrained in their movement have a unique ground state
when situated on a ring. They all align in the same direction along and around the ring. This
creates a closed chain of alternating charge, independent of the number of particles, lowering
the energy. The possibility of aligning all in the same way, but the opposite direction is more
due to a symmetry of the system then to a degenerated ground state energy.

If one wants to observe interesting features like so called frustration, as it can be found in
antiferromagnetically or ferrimagnetically coupled spin systems, e.g. spin glasses, one has to
restrict the motion of the dipoles. The restriction we introduced is to only allow the dipoles to
align in the plane perpendicular to the motion along the ring.

The next figure shows basically the configuration for four particles, if the repulsion is suffi-
ciently high. It is shown to communicate a general feeling for the system’s behaviour.

Now for three particles the ground state configuration isn’t unique anymore, what is shown
in the next picture. One can easily see, that both configurations are energeticly equivalent
(due to symmetry in swapping the charge signs) but cannot be mapped on each other by a
spatial symmetry and therefore are distinguishable. Our simulations show, that in the statistical
average the two configurations shown in figure 18 occur with equal probability. This situation
is commonly referred to as frustration.
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Figure 17: ground state configuration for four dipoles

Figure 18: ground state configurations for three dipoles

To investigate the behaviour of this system further, we introduced a new quantity specifying
the direction of the dipole. Since the distribution of ϑ has usually a distinct maximum at π/2
(see figure 19) it is reasonable to generalise to either out pointing or in pointing dipoles. So in
figure 18 on the left we would have a +1 and on the right a −1 in each case for the dipole at the
bottom. So finally to obtain figure 20 we took this quantity and created a correlation to another
dipole by multiplying the two values of each of them. So we obtain a +1 when they are pointing
into the same direction and a −1 when pointing in opposite directions with respect to the ring.
This will be referred to as theta-correlation. It should be mentioned that this might contain a
certain amount of error, since, especially for higher temperatures, there will be configurations,
that are recorded as correlated, although actually not correlated. But since the ranges of ϑ,
for which such situations are possible, are relatively unlikely, the qualitative information of the
following plots is still valid.

Actually plotted is the average of this correlation value against the distance of the two
dipoles. Distances with less counts than 1� of the maximum in the distance distribution were
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Figure 19: The distribution of ϑ obtained from a 2 particle simulation of 108 steps at T = 0.1nK.
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(b) 4 dipoles

Figure 20: The distance distribution and the average θ correlation for 3 and 4 dipoles, respec-
tively. Simulated with 2 · 108 steps at T = 0.1nK. The gap for four dipoles is due to neglecting
distances with less counts than 1� of the maximum.

The most obvious matter in these two plots is the difference in the θ-correlation between an
even and an odd number of particles (for five and six particles the two plots would qualitatively
be the same). For four particles there are two clearly separated regions with distinct correlation.
The dipoles are commonly π/2 apart from each other and show an alternating correlation, what
exactly was shown in figure 17.
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For three particles the situation is a bit more complex. First of all one can recognise an
asymmetry in the distance distribution, the right hand side decays slower than the left hand
side. This is probably due to the different dependences towards the distance of the two parts
of the potential. The dipole interaction goes basically with 1/d3, whereas the repulsion goes
with 1/d12, so the total potential is not the same at the two sides. One might argue, that the
third particle would restor the symmetry, but since we are plotting a pair distance distribution,
the distance to the third particle is averaged here, so the asymmetry persists. What one would
expect for the θ-correlation is to find it be zero, since both configurations are equally common.
Indeed there is a certain distance where the value is zero, but when moving to either side it goes
to 1 and −1, respectively. In these configurations the distance to one of the other two dipoles is
smaller and so it is energetically favourable to align antiparallel to the dipole that is closer. We
think this form of the graph is a good signature of a frustrated (spin-like) system. Surprisingly
the correlation is not zero at the maximum of the distance distribution near 2π/3, indicated
by the dashed line. This might be due to the above mentioned asymmetry but needs further
investigation to be clarified.

In the following the dependence or stability of the above described correlation and frustration,
respectively, will be investigated. The first point is the behaviour of the alternating correlation
at higher temperatures. In figure 21 the red lines are the same as in figure 20 for four particles.

Figure 21: The average θ correlation for 4 dipoles simulated at different temperatures with 4·109

steps.
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With increasing temperature the correlation becomes weaker and also starts to show a distance
dependency, similar to the one observed for three particles. This is due to the stronger interaction
at shorter distances, so the thermal fluctuations can be compensated better. It is surprising,
that already for still very low temperatures like 10−9K the correlation starts to vanish.

We saw, that the frustration started to disappear if the particles aren’t equally distributed,
so they have to be kept apart from each other. To point out this important condition, we again
plotted figure 20 for three particles, but with a potential one order of magnitude weaker.
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Figure 22: The distance distribution and the average θ correlation for 3 dipoles in a, in compar-
ison with the above plots, weak potential. Simulated with 108 steps at T = 0.1nK.

The distance distribution shows, that now all three particles can be found within π, i.e. are
situated on one half of the ring. The frustration signature doesn’t occur anymore, but a distinct
alternating correlation for the most probable regions. Only in the very unlikely intermediate
region one can observe a steep but smooth transition from −1 to 1.

Furthermore we were interested whether the observed configuration is conserved for higher
number of particles or a correlation length for the θ-correlation can be found. Therefor different
numbers of particles were simulated while maintaining the density (by increasing the size of the
ring) and the repulsive interaction (The problem occurred, that although the distance between
the particles is the same, even the existence of more particles, all contributing to the total
potential a particle experiences, the confinement increased rapidly). In order to compensate
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this effect σ was reduced for higher numbers of particles. The plot (fig. 23) shows a decrease
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Figure 23: The average θ correlation for 10 and 14 dipoles, respectively, simulated providing a
constant density and nearly constant repulsive potential with 4 · 108 steps at T = 0.1nK.

of correlation with increasing particle number as well as a decrease with larger distance. The
decrease due to the particle number, observed at the shortest distance, is quite weak and occurs
probably because of the noise the other dipoles produce. The decay for larger distances is
stronger. It seems, the more dipoles their are in between a pair communicating between them,
the weaker is the correlation between this pair. In which way this decay takes place and what
the the typical correlation length is could be investigated in further research.

5 Conclusions

5.1 Summary

In this project a PIQMC code was realised capable to simulate various systems from a single
particle on a one dimensional ring to n interacting dipoles on such a ring. It was possible to
verify its operativeness in terms of comparison of ground state energies for single particles as
well as for (anti-)symmetrised many particle systems. Different interactions were implemented
and, although not analytical verifiable, show trustable effects, consistent with physical theory.
Significant signs of Bose-Einstein condensation couldn’t be obtained, but we were able to repro-
duce the signatures of a Tonks-Girardeau gas. It was shown that frustration can be obtained
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using a closed chain of dipoles when restricting their motions. Finally some properties of this
dipole chain were observed.

5.2 Experimental realisation

As presented in this report, it is theoretically possible to obtain frustrated systems in rings of
atomic dipoles. However, an experimental realisation might be extremely challenging or even
impossible. In addition to the fact, that the restriction in motion of the dipoles have to be
realised in a way, there are a number of other difficulties. The most serious one is the condition
of extremely low temperatures of 0.1nK. Recent experiments can reach 10nK. Furthermore it
was observed, that repulsion between the particles has to be sufficiently strong to stay in the
frustrated regime. The last point to mention is the effect of increasing particle number, making
the system noisier. Therefore it probably will be more difficult to obtain a clear signature of
frustration.

5.3 Further Research

Further effort should be made particularly in increasing the number of particles that can be
simulated. This basically means increasing the efficiency of obtaining the symmetrisation, but
also make the sampling more efficient to reduce the number of necessary Monte Carlo steps. An
approach to the first point might be to sample through permutations in a Monte Carlo like way
rather than calculating the exact permanent for each step [8]. The latter one could be realised
by implementing path shifting and bi-sectional sampling.

Provided with these improvements the observation of a Bose-Einstein condensate and the
determination of properties of many dipole chains might be possible.
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7 Appendices

A Dipole interaction

The potential of a dipole is known to be

φdipole(~r) =
1

4πε
~r · ~p
r3

(55)

if the distance |~r| is much larger than the size of the dipole. The interaction energy of a dipole
in an external field is

V dipole = −~p · ~E = ~p · grad φdipole(~r) (56)

Substituting the potential into this yields

V dipole = ~p2 · grad
1

4πε
~r · ~p1

r3

= ~p2 ·
(

1
4πεr3

(
~p1 − 3

(~r · ~p1)~r
r2

))
=

1
4πεr3

(
~p2 · ~p1 − 3

(~r · ~p1)(~r · ~p2)
r2

)
(57)

Using the coordinates described in 4.4.1 we can express the variables as

~r = ~r2 − ~r1 = R

cosϕ2 − cosϕ1

sinϕ2 − sinϕ1

0

 ~p1 = p

cos θ1 sinϑ1

sin θ1 sinϑ1

cosϑ1

 ~p2 = p

cos θ2 sinϑ2

sin θ2 sinϑ2

cosϑ2

 (58)

Substituting this into (57) and simplifying using Mathematica gives

V dipole =
p2

4πεr3
(cosϑ1 cosϑ2 − 0.5[cos(θ1 − θ2)− 3 cos(θ1 − θ2 − ϕ1 − ϕ2)] sinϑ1 sinϑ2) (59)

So for n dipoles one gets

V dipole
total =

p2

8πε

n∑
i

n∑
j 6=i

1
r3ij

(cosϑi cosϑj − 0.5[cos(θi − θj)− 3 cos(θi − θj − ϕi − ϕj)] sinϑi sinϑj)

(60)
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B Virial calculations

In this part we will employ the Virial theorem (48) to obtain the kinetic energies associated with
the implemented potentials.

B.1 External potential

The external potential used for certain simulations was chosen to be

V ext = V ext
0 · (1 + cosϕ) (61)

Employing the Virial theorem gives the kinetic energy to be

T ext =
1
2
ϕ · ∂V

ext

∂ϕ
= −V

ext
0

2
ϕ · sinϕ (62)

It turned out that this expression doesn’t give the correct result. This is due to the potential
has his symmetry at ϕ = π rather than ϕ = 0. So the expression that can be found in the code
is

T ext = −V
ext
0

2
(ϕ− π) · sinϕ (63)

where the distance was shifted with respect to the minimum.

B.2 Lennard-Jones potential

The repulsive part of the total potential was chosen to be Lennard-Jones like, where only the
repulsive part is used.

V LJ =
1
2
V LJ

0

n∑
i

n∑
j 6=i

(
σ

dij

)12

(64)

Here we used dij = |~ri−~rj |. It is clear that ∂dij
∂~ri

= −∂dij
∂~rj

and so we can modify the virial formula
as follows

~ri ·
∂V LJ

∂~ri
+ ~rj ·

∂V LJ

∂~rj
= (~ri − ~rj) ·

∂dij
∂~ri
· ∂V

LJ

∂dij
= dij ·

∂V LJ

∂dij
(65)
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Using this result we get

TLJ = −1
4
V LJ

0

n∑
i

n∑
j 6=i

dij ·
∂

∂dij

(
σ

dij

)12

=
1
4
V LJ

0

n∑
i

n∑
j 6=i

12 · dij ·
σ12

d13
ij

= 6 ·

1
2
V LJ

0

n∑
i

n∑
j 6=i

(
σ

dij

)12


TLJ = 6 · V LJ (66)

B.3 Dipole interaction

In the last part the virial of the dipole interaction, derived in appendix A, will be deduced.
The vector ~r in (48) can now be identified with ~r = (ϕ, θ, ϑ). Therefore we can obtain the

kinetic energy of the dipole interaction, using (59), by calculating

T dipole =
1
2

n∑
i

n∑
j 6=i

1
2

(
ϕi ·

∂V dipole
ij

∂ϕi
+ ϕj ·

∂V dipole
ij

∂ϕj
+ θi ·

∂V dipole
ij

∂θi

+ θj ·
∂V dipole

ij

∂θj
+ ϑi ·

∂V dipole
ij

∂ϑi
+ ϑj ·

∂V dipole
ij

∂ϑj

) (67)

This was again done by Mathematica giving

T dipole =
n∑
i

n∑
j 6=i

p2

R3 sin3
(
ϕi−ϕj

2

){ cos(ϑi)
(
− 0.09375 · ϕi · cos(ϑj) cot

(
ϕi − ϕj

2

)

+ ϑi

[
− 0.03125 cos(θi − θj) + 0.09375 cos(θi + θj − ϕi − ϕj)

]
sin(ϑj)

)
+ sin(ϑi)

(
− 0.0625 · ϑi · cos(ϑj) +

[
ϕi
{

0.046875 cos(θ1 − θ2)

− 0.140625 cos(θi + θj − ϕi − ϕj)
}

cot
(
ϕi − ϕj

2

)
+ 0.03125 · θi · sin(θi − θj)

+ 0.09375(ϕ1 − θ1) sin(θi + θj − ϕi − ϕj)
]

sin(ϑj)
)}

(68)
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Figure 24: full code structure

C Program structure

The three functions in the upper right corner perform the creation and evaluation of the path.
A three dimensional array is created for storing the path. With the next function the actual
path is created. Since this function points on the rnd function, the random number generator
function is employed. The third function of this group calculates the total energy of the initial
path, employing all potential and virial functions.

The function metropolis init employs the function kin rho notsym and doesn’t use symmetri-
sation, whereas metropolis employs permanent and so includes symmetrisation. Update kin matrix
recalculates the values of the array kin matrix after a trial move. The function delta E tot cal-
culates the energy change caused by the trial move.
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